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Abstract
The immune system is investigated as a parallel learning machine. The model is
described using the perceptron and is analysed using the techniques of statistical
mechanics. The relationship between gene recombination and capacity of
learning antigens is considered. Although it is known that the immune system
increases antibody diversity through gene recombination, our analysis shows
that the total number of antigens learnt by the immune system is not affected
by gene recombination. However, we find that gene recombination is effective
in the adaptability of learning antigens. Our analysis is in good agreement with
results of numerical simulations.

PACS numbers: 87.10.+e, 05.90.+m

1. Introduction

In order to recognize all unknown antigens, many varieties of antibodies exist in the immune
system. It is known that this diversity of antibodies in the immune system is increased by
gene recombination. There is no gene in the immune system coding for the whole of an
antibody; only the parts making up an antibody are coded. An antibody molecule consists
of a constant (C) region common to all antibodies and a variable (V) region, which is unique
to each antibody. Furthermore, there are two or three families of the V-region gene. Gene
segments are chosen from each family, and one antibody gene is formed [1].

It is believed that this gene recombination of antibody V-region genes evolved from intact
V-region genes [2]. Since these intact genes are formed by an interaction with antigens, the
immune system is considered to be a learning machine in the evolutionary process. Therefore,
it is interesting to consider the effect that recombination has on the performance of the
learning machine. How does the storage capacity of learning antigens increase by antibody
diversity? Do not other effects of recombination exist? In order to answer these questions,
we describe a simple model incorporating gene recombination and analyse the relationship
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between gene recombination and the capacity of learning antigens using the techniques of
statistical mechanics.

2. Model of the immune system incorporating gene recombination

There are two kinds of research using models for the immune system, in which the antibody
diversity is investigated: formal research based on probability theory (see, e.g., [3, 4]), and
research based on computer simulation using methods such as the genetic algorithm (see,
e.g., [5, 6]). Most research using models which incorporate recombination is based on
computer simulations. Although many models have been proposed, there is no research on
the relationship between antibody diversity and gene recombination using a formal model (for
a review, see [7]).

2.1. Description of the antibody incorporating gene recombination

Our study is based on a model of Farmer et al [8], in which strings of binary bits, 0 and 1,
are used to represent both molecules and genes. The patterns of the bits represent the shapes
of molecules. Same length bit strings represent antigens and antibodies. The number of
complementary bits at corresponding positions represents the affinity between an antibody
and an antigen. When the affinity exceeds a certain threshold it is assumed that the antibody
has recognized the antigen.

We reformulate the above model. If 0 bits are replaced with −1 bits and the constant term
and multiplied constant factor are ignored, the affinity Mε

µ between the µth antibody J
µ

i and
εth antigen ξε

i is written as

Mε
µ =

l∑
j=1

J
µ

j ξε
j (1)

where l is the length of the antibody and the antigen. Note that since affinity was originally
defined by the number of complementary bits, the right-hand side of (1) requires a negative
sign. However, for the subject considered in this paper, both definitions, positive and negative,
lead to the same result.

Similar to Perelson et al [5], we introduce a gene recombination mechanism. Each
antibody consists of segments chosen from two gene families. In this study, we assume that
the two families are of the same size m and that the two segments are of the same length l/2,
each comprising half of the antibody.

If recombination is incorporated, affinity (1) is replaced by

Mε
µν =

l/2∑
i=1

I
µ

i ξε
i +

l∑
j=l/2+1

J ν
j ξε

j (2)

where I
µ

i and J ν
j are the µth and νth gene segments selected from each gene family.

2.2. The simple perceptron for the antibody

Equation (1) can be considered to be a perceptron-type neural network model [9]. The simple
perceptron is characterized as follows. The p input patterns correspond to a p × l matrix
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ξ = {
ξε
j ± 1, ε = 1, . . . , p; j = 1, . . . , l

}
. A set of couplings J is a vector with l components

Jj normalized by

l∑
j=1

(Ji)
2 = l. (3)

For the εth pattern, an output of the perceptron is given by

Oε = sgn


 l∑

j=1

Jj ξ
ε
j


 (4)

which takes values ±1. The perceptron learns by changing the couplings J so that this output
vector Oε agrees with a target vector T ε(= ±1). On the basis of geometrical consideration
Cover found that the storage capacity of one perceptron is twice the number of couplings,
2l [10].

The condition that the output vector Oε agrees with the target vector T ε , is written as

T ε

l∑
j=1

Jjξ
ε
j � 0. (5)

Gardner calculated the storage capacity based on the condition generalized inequality (5), and
has also found the same result as did Cover [11].

The simulation has been used in many studies with a genetic algorithm (see, e.g., [5, 6]).
Comparing the perceptron with the genetic algorithm, although the dynamical properties such
as the learning process differ, the statical properties such as the maximum capacity of learning
are similar. We are interested in the maximum capacity of learning,but analytical consideration
is difficult for the genetic algorithm.

2.3. Description of the immune system using the perceptron

We describe an antibody using the perceptron. For the immune system which does not
incorporate recombination, an output of the µth antibody for the εth antigen is given by

Oε
µ = sgn

(
Mε

µ

)
(6)

with
l∑

j=1

(
J

µ

i

)2 = l for all µ = 1, . . . ,m (7)

where Mε
µ is the affinity defined by (1). We call this system the parallel (P) system in this

paper.
On the other hand, for the immune system with gene recombination, an output of the µνth

antibody for the εth antigen is given by

Oε
µν = sgn

(
Mε

µν

)
(8)

with
l/2∑
i=1

(
I

µ

i

)2 = l

2

l∑
j=l/2+1

(
J ν

j

)2 = l

2
for all µ, ν = 1, . . . ,m (9)

where Mε
µν is an affinity defined by (2). We call this system the recombination (R) system in

this paper.
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Throughout this paper we use N as the total gene length (i.e. the total system size) and l
as one antibody gene length (i.e. one perceptron size). These N and l are related to the number
m of segments in each family through

N = lm. (10)

3. Calculation of the storage capacity

In this section, the storage capacity of the R-system is calculated, and for comparison, the
storage capacity of the P-system is also calculated.

As mentioned previously, there are two methods in the analysis of the storage capacity of
the perceptron [10, 11]. Although Cover’s geometrical consideration is intuitive, it is difficult
to extend it to the R-system. On the other hand, Gardner discussed this problem using the
techniques of statistical mechanics [11].

In Gardner’s method, inequality (5) is generalized by introducing the stability parameter
κ as

1√
l
T ε

l∑
j=1

Jj ξ
ε
j � κ (11)

where the couplings are normalized by
√

l. Increasing the stability parameter κ , the output
of the perceptron would not be affected by the noise in the input. If a fractional volume of
the space of couplings {Ji} which fulfils inequality (11) can be defined, the storage capacity is
calculable. In the present study, we employ this method of Gardner’s.

When we analyse the statics of perceptron (4) using Gardner’s method, each element of
the target vector T ε will be squared and (T ε)2 = 1, i.e., either T ε = +1 or −1. This shows
that the choice of the target vector T ε is arbitrary; however, the distribution for each ξε

i has to
be symmetrical about zero. We use the distribution defined by

P (ξε
i

) = 1
2δ
(
ξε
i − 1

)
+ 1

2δ
(
ξε
i + 1

)
(12)

and assume T ε = +1 for all ε. Therefore, the target vector T ε does not appear in the following
calculation.

3.1. Storage capacity of the R-system

For the R-system, the condition that all antigens are learnt by the immune system is written as

1√
N

Mε
µν � κ√

m
. (13)

In the analysis of the perceptron, the size l is assumed to be sufficiently large. However, in
the immune system, although the antibody size is finite, m is assumed to be sufficiently large.
Therefore, inequality (13) is renormalized by

√
m (=√

N/l).
We define the fractional volume of the space of solutions for the gene segments

{
I

µ

i

}
and{

J ν
j

}
which fulfils condition (13) as

V = 1

V 0

∫ ∏
i,µ

dI
µ

i δ

(
l/2∑
i=1

(
I

µ

i

)2 − l

2

)∫ ∏
j,ν

dJ ν
j δ


 l∑

j=l/2+1

(
J ν

j

)2 − l

2




×
∏
µν


∏

ε(µν)

θ


 1√

N

l/2∑
i=1

I
µ

i ξ
ε(µν)

i +
1√
N

l∑
j=l/2+1

J ν
j ξ

ε(µν)

j − κ√
m




 (14)
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V 0 =
∫ ∏

i,µ

dI
µ

i δ


 l/2∑

j=1

(
I

µ

i

)2 − l

2


∫ ∏

j,ν

dJ ν
j δ


 l∑

j=l/2+1

(
J ν

j

)2 − l

2


 (15)

where ε(µν) is the index for the patterns learnt by an antibody constructed from µth and νth
gene segments. The stability parameter κ in (14) appears to be a threshold parameter. Since
we previously assumed Tε = +1 for all ε, the difference between the threshold and the stability
parameters vanishes.

We setpµν as the number of patterns learnt by theµνth antibody, i.e. ε(µν) = {ε(µν)i, i =
1, . . . , pµν}, and assume that there is no intersection in these pattern sets,

{ε(µν)i} ∩ {ε(δγ )j } = ∅ µ �= ν or δ �= γ. (16)

This means that although one antibody recognizes two or more antigens, one antigen is
recognized by only one of the antibodies. Since one antigen realistically can be recognized by
two or more antibodies, the above assumption is unnatural. When the left-hand side of (16) is
not ∅, two cases are expected in the result of the storage capacity calculation. One case is that
the combination of antigens and antibodies will be optimized and the total storage capacity
will increase. The other case is that one antigen is learnt from two or more antibodies and
the total storage capacity will decrease. Since we are interested in the maximum capacity of
learning, we consider (14) under condition (16). Although the optimization in the combination
of antigens and antibodies is an interesting problem, it is not considered here and is a future
issue.

We perform calculations by the replica method [12],

〈〈log V 〉〉 = lim
n→0

〈〈V n〉〉 − 1

n
(17)

where 〈〈· · ·〉〉 indicates the average over the quenched distribution of patterns
{
ξ

ε(µν)

i

}
. We

introduce order parameters qαβ
µ and rαβ

ν as

qαβ
µ = 2

l

l/2∑
i=1

Iα
i,µI

β

i,µ rαβ
ν = 2

l

l∑
j=l/2+1

J α
j,νJ

β

j,ν (18)

where α and β (=1, . . . , n) are replica indices. In the calculations, we assume replica
symmetry,

qαβ
µ → qµ rαβ

ν → rν. (19)

By a standard procedure (see, e.g., [13]), we find
〈〈log V 〉〉

N
= extr

{q},{r}
G

n
(20)

where G is represented by

1

n
G({qµ}, {rν}) =

∑
µν

αµν

∫
Dy log H

(
κ + y

√
(qµ + rν)/2√

1 − (qµ + rν)/2

)

+
1

2m

∑
µ

[
1

2
log(1 − qµ) +

1

2(1 − qµ)

]

+
1

2m

∑
ν

[
1

2
log(1 − rν) +

1

2(1 − rν)

]
(21)

Dy = exp(−y2/2)√
2π

dy H(x) =
∫ ∞

x

Dy (22)

and αµν is the storage ratio, αµν = pµν/N . We derive the saddle point equations, ∂G/∂qµ = 0
and ∂G/∂rν = 0, from (21),
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∑
ν

αµν

[1 − (qµ + rν)/2]2

∫ ∞

−κ

Dy(κ + y)2 = 1

m(1 − qµ)2
(23)

∑
µ

αµν

[1 − (qµ + rν)/2]2

∫ ∞

−κ

Dy(κ + y)2 = 1

m(1 − rν)2
. (24)

According to Gardner’s consideration [11], the maximum storage capacity is determined
by taking the limits qµ → 1 and rν → 1 in (23) and (24). However, if these limits are not taken
simultaneously, either (23) or (24) will diverge to infinity. Taking the limits simultaneously,
we find ∑

ν

αµν =
[
m

∫ ∞

−κ

Dy(κ + y)2

]−1

(25)

∑
µ

αµν =
[
m

∫ ∞

−κ

Dy(κ + y)2

]−1

. (26)

Furthermore, taking the limit κ → 0 in (25) and (26) gives rise to∑
ν

αµν = 2

m

∑
µ

αµν = 2

m
. (27)

Therefore, the total storage ratio of the entire R-system is given by∑
µν

αµν =
∑

µ

(∑
ν

αµν

)
=
∑

µ

2

m
= 2. (28)

3.2. Storage capacity of the P-system

On the other hand, in the calculation for the P-system, we assume that there is one family and
the segment length is equal to the antibody length l. The storage ratio of one antibody is

αµ = pµ

N
= 2l

N
= 2

m
. (29)

Since antibodies do not interact with each other, the total storage ratio of the entire P-system
is given by ∑

µ

αµ = 2. (30)

Therefore, the total storage capacity is the same in the R-system and P-system.

4. Adaptability of learning antigens

Let us write (27) in the matrix form

MA = 0 (31)

where A is a (m2 + 1)-dimensional vector represented by A = t (α11, α12, . . . , αmm−1, αmm, 1)

and M is a 2m × (m2 + 1) matrix. The following example is that of matrix M for the case of
m = 3:

M =




1 1 1 0 0 0 0 0 0 −2/3
0 0 0 1 1 1 0 0 0 −2/3
0 0 0 0 0 0 1 1 1 −2/3
1 0 0 1 0 0 1 0 0 −2/3
0 1 0 0 1 0 0 1 0 −2/3
0 0 1 0 0 1 0 0 1 −2/3




. (32)
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Since the rank of matrix M is 2m − 1 and the number of storage ratios αµν is m2, the number
of linear independent solutions of (31) is given by

m2 − rank M = m2 − (2m − 1) = (m − 1)2. (33)

Therefore, (m − 1)2 storage ratios of m2 are arbitrary under the condition αµν � 0, and take
different values. The other storage ratios are not arbitrary but take different values. When
comparing the number of arbitrary storage ratios with the number of all storage ratios, we find

lim
m→∞

(m − 1)2

m2
= 1. (34)

Therefore, when the number of segments belonging to one gene family m is sufficiently large,
almost all antibodies are arbitrary regarding the number of antigens which can be learnt. It is
considered that the R-system has adaptability in the storage capacity of learning antigens as
compared to the P-system.

5. Consideration for the finite-size antibody

In the preceding calculation for the P-system, the perceptron size l was assumed to be
sufficiently large. However, the antibody gene length is finite. On the basis of geometrical
consideration, Cover calculated the storage capacity of the finite-size perceptron [10]. In the
l-dimensional space, the probability P that p patterns can be discriminated into two groups is

P(l, p) = 21−p

l−1∑
k=0

(
p − 1

k

)
(35)

where (:) is the binomial coefficient. In particular, in the limit l → ∞, (35) becomes the
step function that takes the value 1 if p � 2l and zero otherwise. Therefore, p = 2l is the
maximum capacity of the storage patterns.

For the P-system, the storage capacity for each perceptron can be evaluated. We set
p̂ as the total number of learnt patterns and p̂µ as the number of patterns assigned to each
perceptron, that is,

p̂ =
m∑

µ=1

p̂µ. (36)

We assume that when all perceptrons have learnt the assigned patterns, the entire system has
learnt all the patterns. Therefore, the probability PP that the P-system will learn p̂ patterns is
given by

PP (N,m, p̂1, . . . , p̂µ) =
m∏

µ=1

P(N/m, p̂µ). (37)

In particular, when all p̂µ are equal to p̂/m, (37) takes the highest probability for p̂ = 2N .
This is because P(N/m, p̂µ) behaves as a linear function of p̂µ near p̂µ = 2N/m. Then (37)
is rewritten as

PP(N,m, p̂/m, . . . , p̂/m) = Pm(N/m, p̂/m). (38)

Figure 1 shows the curves for the probability PP (N,m, p̂/m, . . . , p̂/m), (38), for
various m. When m becomes large, the maximum storage capacity of the P-system decreases
from 2N . On the other hand, for the R-system, it is difficult to apply geometrical analysis to
the finite-size antibodies.
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Figure 1. Learning probability of the P-system, PP. The number of segments in each family is
m = 2, 4, 6, 8 and 10; the length of the entire system is N = 200; the length of an antibody is
l = 200/m.

6. Numerical simulations

In this section, the correctness of the preceding analysis is checked by numerical simulations.
The learning rule used in the simulation for the P-system is

J
µ

i (t + �t) = J
µ

i (t) + ηT εξε
i (39)

when T εMε
µ < κ , where η is the learning rate, and the couplings are not changed when

T εMε
µ � κ . This rule is known as the perceptron learning rule [9]. For the R-system, we

extend (39) and the learning rule is given by

I
µ

i (t + �t) = I
µ

i (t) + ηT εξε
i

(40)
J ν

j (t + �t) = J ν
j (t) + ηT εξε

j

when T εMε
µν < κ and the couplings are not changed when T εMε

µν � κ . In the simulations,
we set η = 0.0001 for both systems.

The simulation procedure for the P-system (or for the R-system) is as follows:

(a) Randomly generate the couplings J
µ

i (or I
µ

i and J ν
j ) which satisfy condition (7) (or (9)).

(b) Randomly generate the antigens ξε according to distribution (12).
(c) Assign each antigen to one of the antibodies.
(d) Choose one antigen and compute affinity (1) (or (2)) with the assigned antibody.
(e) Change the couplings according to learning rule (39) (or (40)).
(f) Repeat (d) and (e) for all antigens.
(g) Return to (d) and iterate this procedure, if there remains an antigen not learnt.
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Figure 2. Results of the numerical simulations for the learning probability against the number of
antigens. The length of an antibody is l = 200; the length of a segment is 100; the number of
segments in each family is m = 8.

Each trial is terminated after 5000 iterations and the number of trials in which all antigens are
learnt are counted as successes. We performed 50 trials for a fixed p̂. Then, we defined the
learning probability for p̂ as

the learning probability = number of successes

number of trials (=50)
. (41)

Figure 2 shows the results of the learning probability against the number of antigens.
Figure 3 shows the average number of learnt antigens for various m. We performed simulations
for the case where the number of antigens assigned to each antibody, p̂µ or p̂µν , is random,
and for the case where it is equal. Random assignment yields a somewhat realistic simulation
in terms of learning an antigen which encounters an antibody at random.

For the R-system, figure 3 shows that the average number of learnt antigens is close to
2N and it is independent of m. Therefore, we anticipate that the entire system has similar
properties to one perceptron with size N. Then, the probability PR that the R-system will learn
p̂ patterns is assumed to be

PR (N,m, p̂) = P(N, p̂). (42)

Although m becomes large, the maximum storage capacity of the R-system is still 2N .
Figures 2 and 3 show good agreement with (42) for both random and equal assignments. The
storage capacity of each antibody can be arbitrary and they need not be the same.

On the other hand, for the P-system, the simulation for equal assignment shows agreement
with the probability PP, (38). However, the simulation of random assignment yields a lower
probability than that of equal assignment. Since an antibody assigned a greater number of
antigens has a low probability of learning, the total storage capacity will decrease. Therefore,
gene recombination is effective in increasing the adaptability to learning antigens.

Figure 4 shows the results of the simulations in which all gene lengths of the entire system
were the same, and the length of the antibody gene was changed. All simulations show good
agreement with (42) in that the storage capacity is independent of m and proportional to N.
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Figure 3. Results of the numerical simulations for the average number of learnt antigens. The
number of segments in each family is m = 2, 4, 6, 8 and 10; the length of an antibody is
l (=N/m) = 200; the length of a segment is 100.
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Figure 4. Results of the numerical simulations for the learning probability against the number of
antigens. All lengths of the entire system are the same, N = 1600; the length of an antibody varies
between l = 20, 60, 100, 200, 300 and 600.
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7. Conclusion

The model discussed in this paper does not necessarily express the natural immune system
correctly, since the model is greatly simplified. However, compared with the artificial neural
network model, it is of interest in the aspect of the system size and the adaptability of learnt
patterns. In the neural network model, since the number of neurons can be sufficiently large, the
system is stabilized and has robust properties such as noise tolerance. The simple perceptron
can learn only linearly separable tasks. However, inseparable tasks are also learnable with a
multilayer structure of neurons. In the immune system, the size of an antibody is finite and
inaccuracy arises in learning. This will cause further performance degradation if the number of
antibodies increases. Moreover, the multilayered structure cannot be incorporated. Therefore,
we infer that, in the process of evolution, gene recombination is incorporated, by which the
inaccuracy in learning decreases and adaptability increases.
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